Simultaneous Computation of Dynamical and Equilibrium Information Using a Weighted Ensemble of Trajectories
نویسندگان
چکیده
Equilibrium formally can be represented as an ensemble of uncoupled systems undergoing unbiased dynamics in which detailed balance is maintained. Many nonequilibrium processes can be described by suitable subsets of the equilibrium ensemble. Here, we employ the "weighted ensemble" (WE) simulation protocol [Huber and Kim, Biophys. J.1996, 70, 97-110] to generate equilibrium trajectory ensembles and extract nonequilibrium subsets for computing kinetic quantities. States do not need to be chosen in advance. The procedure formally allows estimation of kinetic rates between arbitrary states chosen after the simulation, along with their equilibrium populations. We also describe a related history-dependent matrix procedure for estimating equilibrium and nonequilibrium observables when phase space has been divided into arbitrary non-Markovian regions, whether in WE or ordinary simulation. In this proof-of-principle study, these methods are successfully applied and validated on two molecular systems: explicitly solvated methane association and the implicitly solvated Ala4 peptide. We comment on challenges remaining in WE calculations.
منابع مشابه
Determination of Stability Domains for Nonlinear Dynamical Systems Using the Weighted Residuals Method
Finding a suitable estimation of stability domain around stable equilibrium points is an important issue in the study of nonlinear dynamical systems. This paper intends to apply a set of analytical-numerical methods to estimate the region of attraction for autonomous nonlinear systems. In mechanical and structural engineering, autonomous systems could be found in large deformation problems or c...
متن کاملIdentifying rare chaotic and regular trajectories in dynamical systems with Lyapunov weighted path sampling
Depending on initial conditions, individual finite time trajectories of dynamical systems can have very different chaotic properties. Here we present a numerical method to identify trajectories with atypical chaoticity, pathways that are either more regular or more chaotic than average. The method is based on the definition of an ensemble of trajectories weighted according to their chaoticity, ...
متن کاملOverview of Weighted Ensemble Simulation: Path-sampling, Steady States, Equilibrium
“Weighted ensemble” (WE) simulation is an enhanced sampling method for non-equilibrium and equilibrium processes that would be impractical to observe using straightforward dynamics simulation. Two key examples are (i) activated processes — i.e., overcoming energy barriers and (ii) binding processes — i.e., sampling rare complexation events. The basic goal of such studies is to get from a known ...
متن کاملBifurcation analysis and dynamics of a Lorenz –type dynamical system
./files/site1/files/0Abstract1.pdfIn this paper we consider a continues Lorenz – type dynamical system. Dynamical behaviors of this system such as computing equilibrium points, different bifurcation curves and computation of normal form coefficient of each bifurcation point analytically and numerically. In particular we derived sufficient conditions for existence of Hopf and Pitchfork bifurcati...
متن کاملOptimal Trajectory Generation for a Robotic Worm via Parameterization by B-Spline Curves
In this paper we intend to generate some set of optimal trajectories according to the number of control points has been applied for parameterizing those using B-spline curves. The trajectories are used to generate an optimal locomotion gait in a crawling worm-like robot. Due to gait design considerations it is desired to minimize the required torques in a cycle of gait. Similar to caterpillars,...
متن کامل